Modeling Two-Dimensional Guillotine Cutting Problems via Integer Programming
نویسندگان
چکیده
We propose a framework to model general guillotine restrictions in two-dimensional cutting problems formulated as Mixed Integer Linear Programs (MIP). The modeling framework requires a pseudo-polynomial number of variables and constraints, which can be effectively enumerated for medium-size instances. Our modeling of general guillotine cuts is the first one that, once it is implemented within a state-of-the-art MIP solver, can tackle instances of challenging size. We mainly concentrate our analysis on the Guillotine Two Dimensional Knapsack Problem (G2KP), for which a model, and an exact procedure able to significantly improve the computational performance, are given. We also show how the modeling of general guillotine cuts can be extended to other relevant problems such as the Guillotine Two Dimensional Cutting Stock Problem (G2CSP) and the Guillotine Strip Packing Problem (GSPP). Finally, we conclude the paper discussing an extensive set of computational experiments on G2KP and GSPP benchmark instances from the literature.
منابع مشابه
Two-stage two-dimensional guillotine cutting problems with usable leftovers∗
In this study we are concerned with the non-exact two-stage two-dimensional guillotine cutting problem considering usable leftovers, in which stock plates remainders of the cutting patterns (non-used material or trim loss) can be used in the future, if they are large enough to fulfill future demands of items (ordered smaller plates). This cutting problem can be characterized as a residual bin-p...
متن کاملMIP models for two-dimensional non-guillotine cutting problems with usable leftovers
In this study we deal with the two-dimensional non-guillotine cutting problem of how to cut a set of larger rectangular objects to a set of smaller rectangular items in exactly a demanded number of pieces. We are concerned with the special case of the problem in which the non-used material of the cutting patterns (objects leftovers) may be used in the future, for example if it is large enough t...
متن کاملA simple approach to the two-dimensional guillotine cutting stock problem
Cutting stock problems are within knapsack optimization problems and are considered as a non-deterministic polynomial-time (NP)-hard problem. In this paper, two-dimensional cutting stock problems were presented in which items and stocks were rectangular and cuttings were guillotine. First, a new, practical, rapid, and heuristic method was proposed for such problems. Then, the ...
متن کاملColumn Generation Technique for Solving Two-dimensional Cutting Stock Problems: Method of Stripe Approach
We consider two-dimensional cutting stock problems where single rectangular stocks have to be cut into some smaller rectangular so that the number of stocks needed to satisfy the demands is minimum. In this paper we focus our study to the problem where the stocks have to be cut with guillotine cutting type and fixed orientation of finals. We formulate the problem as an integer programming, wher...
متن کاملTwo-stage two-dimensional guillotine cutting stock problems with usable leftover
In this study we are concerned with the non-exact two-stage two-dimensional guillotine cutting problem considering usable leftovers, in which stock plates remainders of the cutting patterns (non-used material or trim loss) can be used in the future, if they are large enough to fulfill future demands of items (ordered smaller plates). This cutting problem can be characterized as a residual bin-p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- INFORMS Journal on Computing
دوره 28 شماره
صفحات -
تاریخ انتشار 2016